Lecture Notes

(Simple Circuits)

Intro:

- it is very useful to consider an analogy such as a water model when considering the flow of electric charge

- the water mechanical pump is the equivalent of the electric battery; the water pipes are the equivalent of the electrical conductors and the water itself is analogous to the electric charges in motion, that is, the current
- note that as the water flows around the pipe circuit it can provide energy to run a water wheel, just as charge flowing around an electric circuit can provide energy to operate a light bulb
- it is important to realize that in the water pipes water never gets used up, it just keeps getting recycled; the same thing occurs with electric charge
- the electric charge doesn't get used up; it will keep flowing until the battery potential difference is reduced to zero as a result of energy transferred to the light bulb

- an electric circuit must be a complete closed loop path; in this case, the charges flow from the battery through the conductors to the light bulb and deliver the energy given to them by the battery
- if the path is not complete, charge will not flow and the current stops; this is called an <u>open circuit</u>
- if the battery terminals are connected directly together without the circuit containing a device such as a light bulb to restrict the amount of charge flowing, then a <u>short circuit</u> occurs

- this is a very dangerous situation as the very large current that may flow can cause heating of the conductors, and subsequent fires
- in fact, it is possible to cause sparking and welding of the metal conductors when very large batteries are short-circuited

Diagramming Circuits:

- you can describe a circuit by using words as well as visually by the use of symbols and drawings

- a set of standard symbols has been devised to diagram electric circuits; drawings using these symbols is called a schematic

- rules for drawing a schematic are as follows:
 - 1) Draw the battery or other source of electric energy on the left side of the page
 - 2) Draw a wire coming out of the positive terminal; when you reach a resistor draw the symbol for it
 - 3) At points of two multiple current paths, use a dot to signify the joining of multiple paths of current
 - 4) Follow the current path until you reach the negative terminal of the battery or other source of energy

Series Circuits:

- a series circuit is the simplest circuit; the conductors, resistors, and power source are connected with only one path for current

- the resistance of each device can be different; the same amount of current will flow through each; the voltage across will be different
- if the path is broken, no current will flow
- an ammeter is a device used to measure the current through a device

- the current an ammeter receives must be the same as the component receives, so there must be only one current path; this type of connection is called a series connection
- in order to wire a device in series, you must remove a wire connected to the component and connect it to the ammeter instead; then connect another wire from the second terminal of the ammeter to the circuit component
- always associate the phrase "current through" when dealing with series circuits

Parallel Circuits:

- a parallel circuit has more than one path for current flow

- the same voltage is applied across each branch
- if the resistance in each branch is the same, the current in each branch will be the same; if the resistance in each branch is different, the current in each branch will be different
- if one branch is broken, current will continue flowing to the other branches

- a voltmeter is a device used to measure the potential difference between two points

- when connecting a voltmeter to a circuit always connect the positive terminal to the end of the circuit component closer to the positive end of the battery
- then connect the other terminal to the other side of the component
- this type of connection is called a parallel connection because the circuit component and the voltmeter are aligned parallel to each other
- in this type of setup, the potential difference across the voltmeter is identical to that across the circuit component
- always associate the phrase "voltage across" when dealing with parallel circuit
- voltage makes circuits "go"; currents flow in a circuit because they are given a path from high voltage to low voltage

- voltages are always measured with respect to some reference point in a circuit; sometimes we refer to "voltage drop" or "voltage difference" between two points; other times, we give the voltage with respect to a reference point called "ground", (usually the negative terminal of the battery)
- along any wire (or other good conductor), the voltage is a constant; voltage drops occur across components, such as resistors

Series-Parallel Circuits:

- a series-parallel circuit has some components in series and others in parallel
- the power source and control or protection devices are usually in series; the resistors are usually in parallel
- the same current flows in the series portion, while different currents flow in the parallel portion
- the same voltage is applied to the parallel devices, different voltages to series devices
- if the series portion is broken, current stops flowing in the entire circuit; if a parallel branch is broken, current continues flowing in the series section and the remaining parallel branches

Resistance in a Series Circuit:

- a series circuit is formed when any number of resistors are connected end to end so that there is only one path for current to flow
- the resistors can be actual resistors or other devices that have resistance; the illustration below shows four resistors connected end to end

 there is one path of current flow from the positive terminal of the battery through R₁, R₂, R₃, R₄ returning to the negative terminal

- the values of resistance add in a series circuit; $\underline{Ex.}$ if a 4 Ω resistor is placed in series with a 6 Ω resistor, the total resistance will be 10 Ω
- this is true when other types of resistive devices are placed in series
- the mathematical formula for resistance in series is: $R_t = R_1 + R_2 + R_3 + \dots$

<u>Given a series circuit where R_1 is 11 k Ω , R_2 is 2 k Ω , R_3 is 2 k Ω , R_4 is 100 Ω , and R_5 is 1 k Ω , what is the total resistance?</u>

 $R_{t} = R_{1} + R_{2} + R_{3} + R_{4} + R_{5}$ $R_{t} = 11,000 \ \Omega + 2,000 \ \Omega + 2,000 \ \Omega + 100 \ \Omega + 1,000 \ \Omega$ $R_{t} = 16,100 \ \Omega$

Current in a Series Circuits:

- the equation for total resistance in a series circuit allows us to simplify a circuit

- using Ohm's law, the value of current can be calculated
- current is the same anywhere it is measured in a series circuit

Ex. What is the current in a circuit where four resistors are connected in series. The resistors have resistances of 5 Ω , 1 Ω , 2 Ω , and 2 Ω .

$$I = \frac{V}{R} \qquad I = \frac{12 \text{ V}}{10 \Omega} \qquad \boxed{I = 1.2 \text{ A}}$$

Voltage in a Series Circuits:

- voltage can be measured across each of the resistors in a circuit; the voltage across a resistor is referred to as a voltage drop
- a German physicist, Kirchoff, formulated a law which states that the sum of the voltage drops across the resistances of a closed circuit equals the total voltage applied to the circuit
- Ex. In the following illustration below, we have four equal resistors of 1.5 Ω each placed in series with a 12 V battery; Ohm's law can be applied to show that each resistor will "drop" an equal amount of voltage

- solve the problem with the following steps:
 - 1) Solve for the total resistance
 - $R_{t} = R_{1} + R_{2} + R_{3} + R_{4}$ $R_{t} = 1.5 \ \Omega + 1.5 \ \Omega + 1.5 \ \Omega + 1.5 \ \Omega$ $R_{t} = 6 \ \Omega$

2) Solve for current

$$I = \frac{V}{R} \qquad I = \frac{12 \text{ V}}{6 \Omega} \qquad \boxed{I = 2 \text{ A}}$$

- 3) Solve for voltage across any resistor V = IR $V = 2 \text{ A} \times 1.5 \Omega$ V = 3 V
- if voltage were measured across any single resistor, a voltmeter would read 3 V; if voltage were read across a combination of resistors R₃ and R₄, a voltmeter would read 6 V; if voltage were read across a combination of resistors R₂, R₃ and R₄, a voltmeter would read 9 V; if voltage were read across a combination of resistors R₁, R₂, R₃ and R₄, a voltmeter would read 12 V (the original supply voltage of the battery)

Series Circuit Review:

- 1. The basic Ohm's Law formula is _____
- When solving circuit problems; current must always be expressed in ______, voltage must always be expressed in ______ and resistance must always be expressed in ______.
- The total current of a simple circuit with a voltage supply of 12 volts and a resistance of 24 Ω is ______ amps.
- 4. What is the total resistance of a series circuit with the following values: $R_1 = 10 \Omega$, $R_2 = 15 \Omega$, and $R_3 = 20 \Omega$?
- 5. What is total current of a series circuit that has a 120 volt supply and 60 Ω resistance?
- 6. In the following circuit the voltage dropped across R₁ is ______ volts and R₂ is _____

In the following circuit voltage dropped across R₁ is ______ volts, and R₂ is ______ volts.

Resistance in a Parallel Circuit:

- a parallel circuit is formed when two or more resistances are placed in a circuit side by side so that current can flow through more than one path
- the diagram below shows two resistors side by side; there are two paths of current flow

- one path for electrons to flow is from the negative terminal of the battery through R_1 returning to the positive terminal
- the second path is from the negative terminal of the battery through R_2 returning to the positive terminal of the battery
- to determine the total resistance when resistors are of equal value in a parallel circuit, use the following formula:

 $R_{\rm t} = \frac{\text{Value of any one resistor}}{\text{Number of resistors}}$

-Ex. In the diagram below there are three 15 Ω in parallel. What is the total resistance?

 $R_{\rm t} = \frac{\rm Value \ of \ any \ one \ resistor}{\rm Number \ of \ resistors}$

$$R_{\rm t} = \frac{15 \ \Omega}{3}$$

 $R_{\rm t} = 5 \ \Omega$

- remember, the above equation is only valid for times when all the resistors in a parallel circuit are equal
- if you have a parallel circuit with resistors of different resistances, use the following formula:

$$\frac{1}{R_{\rm t}} = \frac{1}{R_{\rm l}} + \frac{1}{R_{\rm 2}} + \frac{1}{R_{\rm 3}} + \dots$$

- $\underline{\text{Ex.}}$ In the following diagram below, there are three resistors in parallel, each with a different value. If the three resistors have resistances of 5 Ω , 10 Ω , and 20 Ω what is the total resistance of the circuit?

Voltage in a Parallel Circuit:

- when resistors are placed in parallel across a voltage source, the voltage is the same across each resistor
- in the diagram below, we have a circuit with three resistors placed in parallel across a 12 volt battery; each resistor has 12 V available to it

Current in a Parallel Circuit:

- current flowing through a parallel circuit divides and flows through each branch of the circuit

- total current in a parallel circuit is equal to the sum of the current in each branch; the following mathematical formula applies to current in a parallel circuit:

$$I_{\rm t} = I_1 + I_2 + I_3 + \dots$$

- when equal resistances are placed in a parallel circuit, opposition to current flow is the same in each branch

- Ex. In the diagram below, R_1 and R_2 are of equal value. If total current is 10 amps, then 5 A would flow through R_1 and 5 A would flow through R_2 .

$$I_{t} = I_{1} + I_{2}$$
$$I_{t} = 5 A + 5 A$$
$$I_{t} = 10 A$$

- with unequal resistances placed in a parallel circuit, opposition to current flow is not the same in each circuit branch
- current flow will be greater through the path of least resistance

- Ex. In the diagram below, R_1 is 40 Ω and R_2 is 20 Ω . If the voltage supplied is 12 volts, then what is the current flowing through each branch?

- the total current can also be found by finding the total resistance and then using Ohm's law

Parallel Circuit Review:

Series-Parallel Circuits:

- series-parallel circuits are also known as compound circuits; at least three resistors are required to form a compound circuit
- below are diagrams which show two ways a compound circuit could be formed:

- the formulas required for solving current, voltage and resistance problems have already been defined
- to solve a series-parallel circuit, reduce the compound circuit to simple circuits

- $\underline{\text{Ex.}}$ In the following illustration, $\underline{\text{R}}_1$ and $\underline{\text{R}}_2$ are parallel with each other. $\underline{\text{R}}_3$ is in series with the parallel circuit of $\underline{\text{R}}_1$ and $\underline{\text{R}}_2$.

- first, use the formula to determine the total resistance of a parallel circuit to find the total resistance of R_1 and R_2

$$R_{t} = \frac{\text{Value of any one resistor}}{\text{Number of resistors}}$$
$$R_{t} = \frac{10 \Omega}{2}$$
$$R_{t} = 5 \Omega$$

- second, redraw the circuit showing the equivalent values; the result is a simple series circuit

- now you can use already learned equations and methods of problem solving to answer any further questions

- $\boxed{\text{Ex.}}$ In the following diagram, R_1 and R_2 are in series with each other. R_3 is in parallel with the series circuit of R_1 and R_2 .

- first use the formula to determine total resistance of R_1 and R_2 .

$$R_{\rm t} = R_1 + R_2$$

 $R_{\rm t} = 10 \ \Omega + 10 \ \Omega$
 $R_{\rm t} = 20 \ \Omega$

- second, redraw the circuit showing the equivalent values; the result is a simple parallel circuit which uses already learned equations and methods of problem solving

Series-Parallel Circuit Review:

